De vlucht van een pijl zonder en met luchtweerstand
De vlucht van een pijl zonder luchtweerstand
- Het traject van een pijl is, bij afwezigheid van luchtweerstand, enkel afhankelijk van de snelheid bij vertrek, de hoek waarin de pijl afgeschoten wordt, de hoogte van waarop de pijl vertrekt, de valversnelling en de hoogte van het eindpunt.
- Om de formule te bepalen hebben we dus nodig:
- snelheid
- valversnelling
- de hoek waaronder de pijl afgeschoten wordt (in graden)
- begin hoogte (in m)
- eind hoogte (in m)
- : horizontale beginpositie
- = de afgelegde horizontale afstand
- : verticale beginpositie
- = de afgelegde verticale afstand (=hoogte)
- De positie van de pijl wordt bepaald door de formule (uit "Doing Physics with Scientific Notebook: A Problem Solving Approach, Joseph Gallant, 2012"):
- de maximale afstand, R, die een pijl kan afleggen (zonder luchtweerstand) wordt gegeven door de formule
- Wanneer de begin en eind hoogte dezelfde is, kan formula vereenvoud worden tot:
- Deze afstand is maximaal voor een hoek van 45°. Dan wordt gelijk aan 1 en is de formule
- De tijd () dat de pijl onderweg is wordt gegeven door de formule
- De maximale hoogte () dat een pijl kan bereiken wordt gegeven door de formule:
- Hieronder staan de trajecten voor een pijl afgeschoten aan 200 fps (links) en 270 fps (rechts).
- De vorm van de trajecten is dezelfde voor de 200 fps en de 270 fps pijl, enkel de hoogte en afstand is verschillend.
-
Vlucht van een pijl aan 200 fps
-
Vlucht van een pijl aan 270 fps
- Indien er geen luchtweerstand is, zou je zelfs met een moderne compound boog van 70# gemakkelijk over de Eifeltoren heen kunnen schieten!
- Vandaar altijd zorgen voor een goede pijlenopvang achter het doel, nooit de boog naar boven aanspannen, enz.
- Vermits een model zonder luchtweerstand niet realistisch is, dienen we de berekeningen te herhalen met luchtweerstand. (zie verder)
Vlucht van de pijl rekening houdend met de luchtweerstand.
- De luchtweerstand voor een object in beweging wordt weergegeven door de volgende formule
- met:
- de dichtheid van het medium waarin het voorwerp zich voortbeweegt, hier de lucht.
- de snelheid van het voorwerp in m/s
- de drag coefficiënt (weerstandscefficiënt)
- de oppervlakte van de doorsnede loodrecht op de bewegingsrichting
- de kracht die uitgeoefend wordt op het voorwerp tijdens de beweging in het medium (lucht)
- Hierboven hielden we enkel rekening met de valversnelling in de y-component, moeten we hier rekening houden met de luchtweerstand voor zowel de x- als de y-component van de snelheid.
- beginsnelheid
- de hoek waaronder de pijl wordt afgeschoten.
- de x-component van de beginsnelheid
- de x-component van de beginsnelheid
- We kunnen dus op zowel de x- als de y-component van de snelheid, per klein tijdseenheid dat het voorwerp bewogen heeft, de nodige aanpassingen doen. Dit is de methode van Euler en varianten zoals Runge-Kutta en dit zijn numerieke methoden om zulk probleem op te lossen.
- Per klein tijdsinterval kunnen we de aangepaste snelheid berekenen.
- Vermits wil dit zeggen dat
- Dus voor kunnen we dus stellen dat de (negatieve) versnelling door de luchtweerstand gelijk is aan:
- Deze versnelling (=vertraging want werkt in tegengestelde richting aan de snelheid van het voorwerp) kunnen we dan gebruiken om de snelheid
- voor de x-component van de snelheid
- voor de y-component van de snelheid
- hier werkt ook de valversnelling mee
- Dus de nieuwe snelheid op verder in de tijd wordt dus berekend op basis van de voorgaande snelheid + de kleine aanpassing. Door dit te doen vanaf de beginsnelheid en dit te herhalen over het gehele traject bekomen we dus de baan van de pijl met luchtweerstand.
- voor de x-component van de snelheid
- Een voorwerp dat naar beneden valt zal versnellen totdat het aan zijn eindsnelheid (terminal velocity) komt.. vanaf dat moment is de snelheid van het vallend voorwerp constant en versnelt het niet meer.
- De Eindsnelheid/Terminal velocity wordt weergegeven door de formule:
- In het computer programma dat we gebruiken om de baan van de pijl met luchtweerstand te berekenen, moeten we ook rekening houden dat indien de snelheid bij het terug naar beneden vallen groter zou worden dat de Eindsnelheid, om deze dus te beperken tot maximaal de Eindsnelheid/terminal velocity.
- Dus voor kunnen we dus stellen dat de (negatieve) versnelling door de luchtweerstand gelijk is aan:
- Wanneer we dit toepassen voor hoeken van 89, 75, 45 en 30 graden resulteert dit in volgende grafiek:
- Wat is de afstand die een pijl aflegt wanneer die horizontaal wordt afgeschoten? Dit is uiteraard afhankelijk van de verstreksnelheid en wordt weergegeven in de grafiek hieronder. Opmerkelijk is dat een snelle pijl (300 fps) slechts 51 meter aflegt.
- Vlucht van de pijl met en zonder luchtweerstand, uitgezet in de tijd.
- Hoe zit het nu met hoger schieten dan de Eifeltoren... lukt dat dan nog met een boog en hoe snel moet je pijl dan wel niet zijn?
- Spoiler: een 700 grain pijl aan 305 fps afgeschoten onder een hoek van 86° zou er nog net (332m) over vliegen en aan de andere kant van de voet van de Eifeltoren landen. Warning: do not try this at home.. or in Paris!
Nota over de drag coefficiënt
- De -waarde van een pijl is sterk afhankelijk van hoe de pijl is opgebouwd. Een flu-flu pijl zal uiteraard veel sneller remmen en dus een veel grotere -waarde hebben dan een dan een gewone pijl en kleine veren die perfect parallel aan de schacht gekleefd zijn.
- Een hoge spine-waarde, en dus een slappe spine, zal de pijl doen "paradoxen" over z'n traject dus ook de -waarde laten toenemen.
- In een artikel werd de -waarde van de pijl berekend door de pijl magnetisch op te hangen in een windtunnel. Dit levert een zeer accurate meting op van de -waarde van de pijl. In het artikel vonden ze -waarden van 2.6 voor een pijl met spin-wings en een -waarde van 1.5 voor een pijl met GasPro vanes.
- Een naakte schacht heeft een -waarde van zoals getoond in deze video dicht bij de waarde van 0.94 uit dit artikel.
- De -waarde die we hier gebruiken van is afkomstig van een video van een persoon die een aantal verschillende pijlen onder een hoek van 45° afschiet.
- Ter vergelijking, een vrachtauto heel een -waarde van 0.6, dus minder dan de helft van sommige pijlen.
Onder welke hoek kunnen we het verste schieten
Met een pijl
Waar voor het model zonder luchtweerstand je het verste kan schieten door onder een hoek van 45° te schieten, is dit voor het model met luchtweerstand niet zo.
Zo is het bv dat voor een pijl van 550 grain @ 270 fps je het verste kan schieten door onder een hoek van 42° te schieten.
Je kan dit testen door in de formule telkens een andere hoek in te geven. Er bestaan uiteraard wiskundige manieren voor om dit optimum te berekenen.
Met een zware M114 155 mm howitzer kogel
Voor een M114 155 mm howitzer kogel schiet je het verste onder een hoek van 30.5°. Dit in de veronderstelling dat de drag coefficiënt 0.295 is.
Python code
- Syntaxhighlighting lijkt niet te werken, sorry.
<syntaxhighlight lang="python" line> import numpy as np print ("Hello archery world!") </syntaxhighlight>
imports
import numpy as np import matplotlib.pyplot as plt